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Abstract-Surface convection and refractive index effects are examined during transient radiative heating 
or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of 
the layer is exposed to hot or cold radiative surroundings. while each boundary is heated or cooled by 
convection. Emission within the layer and internal reflections depend on the layer refractive index. The 
reflected energy and heat conduction distribute energy across the layer and partially equalize the transient 
temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with 
various optical thicknesses, the behavior of a layer heated by radiation on one side and convectively cooled 
on the other, and a layer heated by convection while being cooled by radiation. The numerical method is 
an implicit finite difference procedure with non-uniform space and time increments. The basic method 

developed in earlier work is expanded to include external convection and incident radiation. 

INTRODUCTION 

Thermal protection coatings and ceramic components 
are being developed for use at high temperatures in 
aircraft and automotive engines. They can be sub- 

jected to transient heating or cooling by a variety of 
external radiation and convection conditions. Some 

of the materials are partially transparent to radiative 
energy. Within the material radiative transport acts in 
combination with heat conduction. Since the materials 
operate at high temperatures there is considerable 

internal emission which is proportional to the layer 
refractive index squared. Ceramic refractive indices 

range from approximately I.5 to 3 so internal radi- 
ation fluxes can be large. Since these fluxes depend 
strongly on temperature level, accurate instantaneous 

temperature distributions must be calculated during a 
transient numerical solution or the heat flows. and 
hence the solution will become inaccurate as time 

advances. 
For semitransparent materials the transient thermal 

behavior of single and multiple plane layers, cylinders. 
spheres and a square geometry has been examined in 
the literature for a variety of radiative conditions. 

Compared with steady state, transient behavior has 
been studied to a much smaller extent. Two of the 

early transient studies [ 1. 21 are for a semitransparent 
layer bounded by walls at specified temperatures. The 
temperature of one wall is suddenly changed to initiate 
the transient. Index of refraction effects are not 
included so results apply for a gas with a refractive 
index of one. In a more recent work [3] transient 
temperatures in glass were analyzed by using a zonal 
type of method. Computations were made for a variety 

of conditions. Some results are for a layer confined 

between opaque walls with specified temperatures, 
others are for layer assumed to have opaque surfaces 
with temperatures that depend on external conditions. 
A few comments are made on the effects of increasing 

the layer refractive index from I .5 (typical for glass) 
to 3.0. A cylindrical geometry is analyzed in ref. [4]; 
transient cooling characteristics are obtained for the 

cylinder exposed to a cold rarefied environment. A 
multilayered geometry is analyzed in ref. [5]. Transient 

cooling of a layer of liquid drops was investigated in 
ref. [6] relative to the design of a radiator to dissipate 

energy in outer space. The layer cools in the cold 
vacuum of space and does not have boundary con- 
vection or incident radiation. A particular solution 

was obtained in ref. [7] for cooling a layer by radiative 
loss in the limit of zero heat conduction. Transient 
radiative cooling of a two-dimensional square 

geometry with a refractive index of one was calculated 
in ref. [8] by a finite difference method. 

The finite difference procedure that is a foundation 

for the present work was developed in refs. [9, IO]. In 
ref. [9] transient cooling was examined for a semi- 
transparent material with a refractive index of one. 

The method was extended in ref. [lo] to larger refrac- 
tive indices that provide internal reflections. In refs. 

[9. IO] the layer was initially hot and was cooled by 
exposure to a cold vacuum environment. The present 
work includes radiative and convective heating or 
cooling on each boundary. The layer temperature is 
initially uniform. As the transient begins, the bound- 
ary regions can be heated or cooled rapidly depend- 
ing on the external radiation and/or convection con- 
ditions. To account for large temperature variations 
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NOMENCLATURE 

u absorption coefficient of layer [m-‘1 
c specific heat of radiating medium 

[w s kgg’ K-‘1 
D thickness of radiating layer [m] 
E, , E,, exponential integral functions 
h convective heat transfer coefficient 

[W me2 Km’] 

H convection-radiation parameter, 

h/oT: 
k thermal conductivity of layer 

[W m-’ K-‘1 
n refractive index of layer 
N conduction-radiation parameter, 

k/4@D 

q heat flux [W mm’] 

9 dimensionless flux, q/at 

4, radiative heat flow per unit area and 
time [W mm’] 

qr,, qr2 external radiative fluxes incident on 
sides of layer [W mm’] 

R radiative source term in energy 
equation 

t dimensionless temperature, T/T, 
T absolute temperature [K] 

T, initial temperature of semitransparent 
layer [K] 

Till integrated mean temperature [K], 

t, = T,IT, 
T, temperature of surroundings [K], 

1, = T,lT, 

J coordinate in direction across layer [m] 
X dimensionless coordinate, .x/D. 

Greek symbols 

Q%t emittdnce for layer at uniform 
temperature 

0 time [s] 

KD optical thickness of layer, UD 

P density of layer [kg mm’]; surface 
reflectivity 

rJ Stefdn-Bohzmann constant 
[W mm2 K-4] 

z dimensionless time, (4nT:/pcD)O. 

Subscripts 

a, b, c, d interfaces of layer, Fig. 1 

g gas for convection at boundary 
i initial condition; incoming radiation 

the ith X location 
x total number of X grid points 

n at the nth time increment 
0 outgoing radiation 
S surrounding environment 
ss at steady state 
ut uniform temperature condition 

1,2 external conditions at two sides of 
layer. 

that may develop for some conditions, non-uniform Initially the layer is at a uniform temperature T, so 
increments are used to concentrate grid points near r(X,O) = 1. It is then placed in surroundings where it 

the boundaries. Accurate surface temperatures must can receive diffuse radiant energy q,, and qr2 on each 
be obtained to prevent errors in the convective heat side. The layer can also be cooled or heated on each 
flows and in reradiation from the volume adjacent to 
the boundaries. 

In the solution the radiative effect of the tem- - 
perature distribution surrounding each location is 
integrated to obtain its contribution to the local 
absorbed energy within the medium. The transient 
energy equation is solved with an implicit finite differ- qri = q1.0 
ence procedure using this local radiative internal --: 
energy source that depends on the transient tem- 
perature distribution. Internal reflections have a large Li 
effect on the spatial distribution of absorbed energy. 
The boundary relations developed in earlier work are Pa 7 
expanded to account for surface reflections, trans- 
mitted external radiation and convection. ht 9 T,I 

T 
ANALYSIS 

*I 

A 

a, k, n 2 1 

T(x,O) = T, 

> q&b %c \: 

\qb q./ 0. 

/- Pb 
pc 7 

T(0) 

/- Pd 

Energy equation for transient cooling X=0 x=D 
A plane layer with thickness D, Fig. 1, is a gray 

emitting, absorbing and non-scattering material that 
Fig. 1. Geometry, boundary conditions and nomenclature 
for plane layer with externally incident radiation and surface 

is heat conducting and has a refractive index n > 1. convection. 
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side by surrounding gas at temperatures r,, and T,? 

with heat transfer coefficients h, and h,. 
The transient energy equation in dimensionless 

form is [I l] 

where R(r) is the gradient of the radiative flux and is 
a function of X and 7 

SH2KD 
I 

?(X*,r)E, (ti,JX* - X/)dX* 
,I I 

(2) 

The go,b and 40,C are dimensionless diffuse fluxes that 
are outgoing from the internal sides of the layer 
boundaries (Fig. 1). They each consist of internally 

reflected energy and externally incident radiation 
transmitted through a boundary. 

Boundar!, conditions 
Boundary conditions are required for radiation and 

for heat conduction coupled with external convection. 

Radiation passes out of the layer from within the 
material; there is no emission at the boundaries which 
are planes without volume, hence there are no radi- 
ation terms in the surface convective boundary con- 
ditions. The conductionconvection boundary con- 
ditions at .Y = 0 and _y = D for all times are: 

-q = h, [I-,, - T(s = O,H)] (34 
L \’ , _ ,) 

The radiation boundary conditions are developed 
in a manner similar to refs. [ 10. 121; they are required 
for the time-dependent fluxes &(r) and &Jr) in 
equation (2). Using the reflectivities on both sides of 
the boundary surfaces, each Q0 is composed of trans- 

mitted and reflected portions: & = (1 -p&7,, +P,,&, 
and &, = (1 -pd)~r2+pc&c (Fig. 1). The boundaries 
are assumed to be sufficiently rough that all reflections 

are diffuse; values of p are given in ref. [ 121. The 
incident fluxes within the layer, & and &., consist of 
energy leaving the opposite boundary and attenuated 
through the layer, and energy incident at the boundary 
as a result of emission within the layer. These are 
obtained from the radiative flux equation which is the 
integral of equation (2). As detailed in ref. [12], 

(da) 

K,,c(~) = 
C‘2(T)+A,C,(r) 

1 -A,A, 
(4b) 

where for conditions including incident external radi- 

ation 

(4c) 

(4d) 

c, (5) = (1 -P,)Q,, +2n’p,k-, s t”(X,r)E2(riDX)dX 
0 

(de) 

C?(T) = (1 -j&&+2n’p,ti, 

X ’ ~“(x,T)E&(~ -X)]dX. (4f) 

For the specific case of black surroundings. & = t,4 
and & = ti2. 

Numerkal solution procedure 
To derive a transient solution method for equation 

(1). the numerical procedure in ref. [IO] is used as a 
basis. A brief summary is given here with modi- 

fications for external radiation and convection. As 
shown in ref. [IO], trapezoidal integration of dt/dz 
over a small Ar is used to advance the temperature 
an increment in time to give At = t,,, , -t,, 8 
(A~/2)[(?l/?r),+, + (i:t/&),,]. The second derivative 
of temperature at r+As (at index nf I), is written 
in terms of t(r) (at index n) and AZ as 
(&/ax’),,+, = (:‘At/SX’+ ?t,,/?X’. The radiative 

source at s+Ar, R(r+Az) = R,, ,, is expressed in 
terms of R(z) =R,, by R,,, , = R,,+ (dRl3t),Af. By 
using equation (1) to eliminate at/& in the At relation, 
and applying the two preceding relations in this para- 
graph, an equation for At is obtained: 

= Ar[$+j. (5) 

The subscript i specifies the X location (i = 1 at X = 0, 
i = M at X = 1). Relations are now developed to 
obtain Ar(X,) = At, at the X, at r,; the temperatures at 
T,~+, are then t,)+, (X,) = t,,(X,)+Ar(X,). Since all terms 
on the right-hand sides of the preceding relations in 
this section are at r corresponding to the index n, this 

subscript is omitted in the following. 
To obtain a solution, relations are needed in equa- 

tion (5) for ?‘/?X’ at the internal grid points of the 
layer and at the boundaries. For non-uniform 
increment sizes AX,- and AX; in the negative and 
positive directions about each X,, the standard second 
derivative discretization is substituted into equation 
(5) to obtain an equation for At, at the interior points 
2<i<M-1, 
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NAT 

- AX; (AX: + AX,- ) 
Ar,_,+[I_ir$), 

NAz 1 At, - 
NAr 

+ 
AX: AX;- AX: (AX: + AX!- ) 

At,+, 

Ll 
+- 

AX; 
(6) 

To account for convection at each boundary, equation 

(6) is replaced by special forms developed from the 
boundary conditions in equations (3a) and (3b). At 
i = 1, by using the definition of At, equation (3a) in 

dimensionless form -at/ax\, = , = (H,/4N)(t,, -t,) is 
written in terms of At by taking the difference in values 
atz+Arandr: 

3At ff, 

ax ,=, 
= ,,At,. (7) 

In the finite difference procedure the d2At/aX2 and 
a’t/aJ? are needed at i = 1 for use in equation (5). 
Expanding for either 5 = At or t about i = 3/2: 

The quantity (t2 -<,)/AX: is substituted in equation 
(8) for the first derivative at i = 3/2, and either equa- 
tion (7) or equation (3a) is substituted for aAt/aX or 
at/ax at i = 1. After rearrangement, 

For i = 1 substitute equations (9a) and (9b) into equa- 
tion (5) to give, after rearrangement, 

NAt 
----At, 

(AX:)’ 

= AZ _2N-(t,-t,)+ 
@K+)2 

&Jr,,-t,)-4 
I 1 

i= 1. (10a) 

Similarly, at i = M, 

= At 
2N 

----(tM-, -(,m) 
(AX,;) * 

+- H2 (tgz-f.k,)-&, 
2AX,k 1 i=M. (lob) 

Equations (6) and (10) provide a tridiagonal system 
for obtaining At,, At?. . ,AtM; the coefficients are 
given in the Appendix. 

c?R/& is needed for the b, coefficients. From equa- 
tion (2): 

+ Go,c(~) 
7&[K&1 -x)] +2n2K:, 

at(x*,T) 
X t3 (X*,r) ___ 

at x* 
E,(KJX*-X])dX* 

I 

at(x,T) -1 
X- L II az x 

(11) 

From equation (4) the time derivatives of & and &, 
in equation (11) are: 

d&(r) _ (dc, (r)/dr) + &(dCz (r)/dr) 
dz 1 -A,,A, 

Go.,(T) (dG(~)ld~) + Ac(dC, (T)/dT) 
-= 

dz 1 -A,,A, 
(12) 

where 

dc, (7) 
___ = 8n'p,~, 

wx t) 
dz 

t3 (X, r) 7 Ez (K-nX)dX 
x 

dG (7) __ = 8n2p,K, 
dt 

wx z) 
X t’(X, T) __ 

& x 
Ez[Kdl -X)ldX. 

The tridiagonal array is solved using the algorithm in 

refs. [13, 141. At each X,, At, is added to t, to advance 
the temperature to the next time. 

To evaluate the radiative source term R(t), equation 
(2), and its derivative dR/dt, equation (11), an accu- 
rate integration method is required. Special treatment 
as described in ref. [6] is used as X* approaches X 
since E,(O) = co. An analytical integration is used for 
a very small region about the singularity and Gaussian 
integration (using an 1MSL subroutine) is used start- 
ing at this very small distance away from the singu- 
larity. Values of the functions at the unevenly spaced 
locations in the Gaussian subroutine are found from 
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the grid point values by cubic spline interpolation. By 

trying various AX values and numbers of grid points 
it was found that 50 increments across the layer gave 

accurate results for the K,, considered here. Small 

values of AX = 0.1 were used for 10 increments near 
the boundaries where temperature variations can be 
large. To avoid numerical instabilities that can arise 
for a complex integrodifferential equation as given by 
equations (1) and (2), a small time step AT = 0.005 
was used for the first 2OAr; after that AT = 0.01 was 

used. Typical computing times to reach z = 2.0 were 
4 min on a Cray X-MP. In most instances the tem- 
perature distributions for r = 1.5 were less than 1% 
away from steady state. 

Transient energy halunce 
The transient temperature distributions were used 

in an overall energy balance to check numerical solu- 
tion accuracy at each time step. The instantaneous 

energy rate incident by radiation and added by 
convection is in dimensionless form, ql-, +&+ 
H, [te, - t(O,z)] + Hz[tgz - t( 1 ,z)]. This must equal the 
sum of radiative energy reflected and emitted by the 
layer and the transient rate of energy storage. The 

reflected energy is P&, + p,& The instantaneous 
radiative flux leaving through both boundaries is 

(l-~bkh+(l-&)~~c = [(l-Pb)~Phl[~~.b-(l-Pa)~i,l 

+[(I -pJ/p,..[&,,,- (1 -Pi)&]. This was evaluated 
using & and qO,, from equation (4). Note that in the 
limit when n = 1, P,, = pc = 0 and Ab = A, = 0; the pb 
and pc in the radiative flux calculation can then be 
removed algebraically to avoid singular behavior in 
the numerical calculations. The transient energy stor- 
age rate was obtained from (4/At)[t,(r+Az) -t,(r)] 
where t,,(z) is the instantaneous integrated mean tem- 

perature across the layer. The overall energy balance 
was satisfied within 0.5% throughout the transient 
calculations. 

Limit for injinite thermal conductivity 
Some of the transient temperature distributions that 

will be given are for symmetric heat transfer con- 

ditions on both sides of the layer. For some values 
of the parameters the temperature distributions are 
somewhat uniform during a large portion of the tran- 
sient. In the limit of infinite thermal conductivity the 
distribution is uniform at each time. It is of interest 
to compare this limiting solution with appropriate 
transient results. 

For a gray layer at uniform temperature the layer 
emittance. which is equal to its absorptance, was 
derived in ref. [ 151 as 

E”,(WG = c(“,(WG,) 

= [I -P‘&(n)1 
1 - 2& (%) 

l-[l-~l2E&) 

(13) 

where p,(n) is given in ref. [12] from the Fresnel 

relations. For symmetric conditions qF, = qr2 = qrs, 
T,, = T,, = T,, and h, = h, = h. The transient energy 

balance of radiant absorption and emission, con- 

vection and internal energy storage is 

The z,, = E,~ and equation (14) is placed in dimen- 
sionless form. The t and t,, variables are separated and 
the result integrated to yield the time corresponding to 
the transient temperature t,,: 

Values for e,,(n,~~) are in refs. [IO, 151. Results from 
equation (15) are shown in some of the figures that 
follow and, where applicable, very good agreement is 

obtained with the transient finite difference solutions. 

RESULTS AND DISCUSSION 

The transient temperatures begin from a uniform 
initial temperature. For the results in Figs. 2-5, 7 and 
8, the external radiation and convection conditions are 

symmetric on both sides of the layer so the transient 
temperatures are symmetric and the distributions are 
given for one-half of the layer. Results are given at 
five instances during the transient; the distribution for 

the largest time is at or very close to steady state. 
Some of the results for large time were checked with 
steady state calculations using the computer program 
from ref. [ 121; excellent agreement was obtained. 

Figures 225 give transient temperatures for a 
layer suddenly subjected on both sides to a higher 

temperature radiative environment so that 

q,, = 07-,4 = Y r2 = crT$, and to convective cooling. 
This could correspond to a film-cooled ceramic com- 
ponent exposed to a high heat flux from a soot filled 
flame. Figure 2(a))(c) is for optical thicknesses 
tin = 0.5,2 and IO. For tin = 0.5 the layer is somewhat 
optically thin, and radiation effects are limited by 
small absorption. For IQ, = 2 radiation can penetrate 

the entire layer, but there is significant absorption; 
this yields close to the maximum radiation effect 
throughout the layer. For IC,, = 10 the layer is some- 
what optically thick and most absorption of external 
radiation is near the boundaries. During the transient 

the layer is heated on each side by black surroundings 
at a temperature 1.5 times the initial temperature 
(q,, = qc2 = lS4). Simultaneously the layer is cooled 

by gas on each side at T,, = T,? = 0.5T,. The 
H, = Hz = I parameters are such that convection is 
somewhat comparable with radiation. There is mod- 
erate conduction as given by the parameter _W = 0.1. 
The solid curves are for a refractive index n = 1, the 
dashed curves are for n = 2. 

In Fig. 2(a) where the layer is rather optically thin, 
external radiation passes readily into the interior to 



R. SIEGEL 

1.2 

1.1 

1.0 

0. 9 
C 

N=O. 1 
q)=o.5 

I , I I 

1. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

1.4 

1.3 

1.0 - T=O 

- nD=2 

o. 9 I I, I, I I 
0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

provide a fairly uniform internal heat source, some of 
which is removed by reradiation. Energy is removed 

near the wall by convection interacting with conduc- 
tion. The result is that for small z the interior tem- 
perature remains fairly uniform. As z advances, the 

convection-conduction cooling penetrates the layer 
further and at the steady condition the profile has 
become somewhat parabolic as is typical for a layer 
with a uniform internal heat source. When the refrac- 
tive index is increased from one to two the temperature 
profiles are more uniform. This is a result of increased 
radiative energy transfer across the layer arising from 
internal reflections. It is noted that for small 5 the 
layer heats more rapidly when n = 2. This is caused 
by an increased layer absorptivity for small Q, as 
shown in ref. [ 151. 

The optical thickness is increased to tiD = 2 in Fig. 
2(b). It is more difficult for radiation to pass into the 

(c) 1.5 

t 
$y 1.4 

x” 
‘ii 

E 1.3 
zl 
i? 
f 
g 1.2 

L 

3 
2 1.1 

Si 
F 
c 
; 1.0 

a N=O. 1 
/CD=1 0 

0. 9 
0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

Fig. 2. Effect of refractive index on transient temperature 
distributions in a layer initially at uniform temperature, after 
exposure to external radiation and convective cooling. 
Parameters: N = 0.1, qr, = qr2 = 1.9, H, = Hz= 1, 
t,, = tg2 = 0.5, n = 1 and 2. (a) Optical thickness ho = 0.5; 
(b) optical thickness tiU = 2; (c) optical thickness K~ = 10. 

layer interior, and there is stronger absorption in the 
regions near the boundaries. For small z this produces 
a maximum temperature at about X = 0.1. Heat is 
then conducted into the interior, and to the boundary 
where it is removed by convection. As z increases, the 
interior temperature becomes more uniform as a result 
of conduction with lower radiation penetration; at 
steady state the temperature across most of the 
interior is much more uniform than in Fig. 2(a). 
Increasing II makes the temperature more uniform 
across the layer, but in contrast to Fig. 2(a) the layer 
heats more slowly. The horizontal dot-dash lines are 

for the limit of infinite conductivity from equation 
(15), and are for n = 2. Good agreement is obtained 
with the mean temperature levels of the dashed curves 
for n = 2. 

The trends in Fig. 2(b) are accentuated in Fig. 2(c) 

where til, = IO. For a larger optical density of the 
layer, absorption of incident radiation occurs in 
regions closer to the surface and the temperature 
increases strongly in this region for small z. Energy is 
transported into the interior by conduction and 
internal radiation, and the interior temperature dis- 
tribution becomes uniform as steady state is 
approached. The surface temperature is reduced by 
convective cooling. There is a very significant effect of 
refractive index; the profiles for n = 2 are much more 
uniform. 

Since the profiles have larger variations in shape 
when IZ = 1, results for n = 1 are used in Fig. 3 to 
illustrate further the effect of ICY. Since the N = 0.1 
parameter contains the layer thickness, D, it is best to 
think of all the results as being for the same D. The 
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0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

n=l - N=O. 1 
,.+I=5 ---- N=l.O 

9. I I I I 

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

Fig. 3. Effect of optical thickness on transient temperature 
distributions during radiant heating and convective cooling 
of a layer with refractive index n = I, Parameters: N = 0.1. 

&, = & = 1.S4. H, = Hz = I. t,, = t,, = 0.5. 

K” is then changed by having materials with different 
absorption coefficients. With this viewpoint all of the 
results are for the same thermal conductivity. For 

z = 0.05 the results demonstrate the effect of increased 
radiant absorption near the boundary as tiD increases. 
Near steady state, t z 1.5, increasing the optical den- 
sity makes the temperatures almost uniform except 
near X = 0 within a region of decreasing width as xD 
increases. 

Figure 4(a,b) shows the effect of the conduction 
parameter for K” = 5 and n = 1 and 2; the previous 
results were for N = 0. I. When N is increased to one 
in Fig. 4(a) the temperatures are fairly uniform 
throughout the transient. This is accentuated by 

increasing IZ to two in Fig. 4(b). The results approach 
the limiting horizontal lines from equation (15) for 

N--t m. For N = 0.01 and n = 1 there are substantial 
temperature gradients near the boundaries [Fig. 4(a)] 
from the interaction of strong radiant absorption and 
convective cooling. The gradients are substantially 
reduced for n = 2 in Fig. 4(b). 

0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

Fig. 4. Effect of conduction-radiation parameter on the tran- 
sient temperature distributions in a layer during radiative 
heating and convective cooling starting from a uniform 
temperature for ti,, = 5. Parameters: qr, = qrZ = l.54, 
H, = Hz = I, /,, = t,: = 0.5. (a) Refractive index n = 1; (b) 

refractive index n = 2. 

The effect of surface convection is demonstrated in hot side by a radiative flux equal to that from black 
Fig. 5 for K” = 5. Increasing H, = Hz to five has a surroundings at T,, = 1.5T,. There is no convective 
very strong effect throughout the transient. Large tem- cooling on the hot side, H, = 0; there is only reradi- 
perature gradients exist near the boundaries. Because ation on this side. Cooling occurs on the cold side 
of stronger cooling the steady state temperatures (X = 1) by convection with H2 = 1 and Tg2 = O.Sr, 
(Z Z 1.5), which represent a balance of radiative heat- and by radiation to black surroundings at T,, = OST,. 
ing and convective cooling, are significantly reduced. These conditions simulate heating a ceramic com- 
Comparing Fig. 5(a) and (b) shows the effect of ponent by exposure on one side to a soot filled flame, 
increasing n from one to two; for n = 2 the dis- and providing convective cooling only on the other 
tributions are more uniform. side. 

For Fig. 6 the conditions at the boundaries have 
been changed. The profiles are not symmetric and are 
shown for X = 0 to 1. The layer is heated on the 

In Fig. 6(a) there is a large effect of increased refrac- 
tive index in making the temperature distributions 
somewhat more uniform. At the hot side boundary the 

(a) 1. 5 

4 

3 

2 -----_____ 

1 _.l._,,,_,.._..._. 

0 
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(a) 

1.4 

1. 3 

1.2 

1.1 

1.0 

0. 9 
b. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

c” 

3 1.4 

x” 
F 

i 1.3- 0. 3 
ZI 
z 

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 

Dimensionless coordinate, X = x/D 

Fig. 5. Effect ofexternal convection on transient temperature 
distributions in a layer during radiative heating and con- 
vective cooling starting from a uniform temperature for 
K,, = 5. Parameters: N = 0.1, qr, = qTr2 = 1.5”, t,, = f,, = 0.5. 

(a) Refractive index n = 1; (b) refractive index n = 2. 

lack of convective cooling provides a zero temperature 
gradient since radiation leaves from within the volume 
and not from the surface itself. In Fig. 6(b) the IC” is 
increased to 10 and there is more absorption of inci- 
dent radiation near the hot boundary. Early in the 
transient there is a strong temperature rise near the 
hot boundary, while the temperatures decrease sub- 
stantially at the boundary that is convectively cooled. 
Increasing n is not as effective in equalizing tem- 
peratures as in Fig. 6(a) because radiative transfer 
across the layer as augmented by internal reflections 
is reduced by the increased ICY. 

Another type of convection-radiation interaction is 

’ 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 

Dimensionless coordinate, X = x/D 
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Fig. 6. Effect of refractive index on transient temperature 
distributions in a layer initially at uniform temperature after 
exposure to external radiation on one side without convective 
cooling on that side; cooling is by radiation and convection 
at the other side. Parameters: N = 0.1, &, = 1.54, t,, = 0.5, 
H, = 0, H, = 1, tg2 = 0.5, n = 1 and 2. (a) Optical thickness 

K” = 2; (b) optical thickness K,, = IO. 

illustrated by Figs. 7 and 8 where the layer is heated 
symmetrically by convection of a non-radiating hot 
gas. The radiative environment on both sides is cool, 
such as by having a surrounding film-cooled enclosure. 
At steady state, convective heating is balanced by 
radiative cooling from within the layer. Steady state 
temperatures as a function of rcn are shown in Fig. 
7(a) and (b) for n = 1 and 2. For ICY = 0 there is 
no emission by the completely transparent layer, and 
convective heating on both sides with t,, = tgz = 2 
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Fig. 7. Effect of optical thickness on steady state temperature 
distributions in a layer exposed to large convective heating 
while being cooled by radiation. Parameters: N = 0.1, 
t,, = I,, = 0.2, H, = H2 = 5. fe, = fg2 = 2. (a) Refractive 

index n = 1: (b) refractive index n = 2. 

raises the temperature to t,, = 2 throughout the layer. 

When K” -+ x8 the layer is opaque and the balance at 
the boundaries of convection, absorption and emis- 
sion provides the uniform equilibrium temperature 
that is shown. For K” between these limits the results 
show the effect of internal radiative cooling on the 
steady state temperature distributions. For each tiD 

the maximum temperatures are at the boundaries 
where convective heating is being applied, and the 
minimum temperature from radiative cooling is at the 
centerline. In Fig. 7(a) for n = 1, the lowest centerline 
temperature is for tiL, z 1. The lowest surface tem- 
perature is for an opaque layer. For tin = 20 the tem- 
perature distribution is flat over most of the layer, and 
radiation leaves from regions close to the boundaries. 
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Fig. 8. Effect of refractive index on transient temperatures in 
a layer initially at uniform temperature after exposure to 
large external convective heating and radiative cooling. Par- 
ameters: N = 0. I, I,, = ta2 = 0.2, H, = Hz = 5. t,, = t,. = 2, 
n = 1 and 2. (a) Optical thickness ho = 0. I; (b) optical thick- 
ness tic, = I; (c) optical thickness K” = 10. (C’ontinued 

The results change somewhat in Fig. 7(b) where n = 2; 
for K,, > 0.5 temperatures are more uniform in the 
central portion of the layer. 

For three of the IC” in Fig. 7, transient temperatures 
are shown in Fig, 8 for n = 1 and 2. The application 
of convective heating produces a rapid initial tem- 
perature rise near the boundary. In a few instances 
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Fig. 8--continued. 

radiative cooling produces temperatures in the central 

portion of the layer that are a little below the initial 
temperature. By comparing Fig. 8(a) and (b) it is 
evident that increasing tin and n provides more uni- 
form temperature distributions. The effect of internal 
radiative cooling is substantial, as discussed for steady 
state results in Fig. 7. 

CONCLUSIONS 

Transient solutions are obtained for a semi- 

transparent radiating and conducting layer heated or 
cooled by having each boundary exposed to radiation 
and/or convection. Results for n = 1 and 2 show the 
effect of the layer refractive index with boundary 
reflections assumed diffuse. A transient implicit finite 
difference formulation developed in previous work 
was extended to incorporate convective and radiative 

boundary conditions. Computing times on a Cray X- 
MP are about 4 min for a complete transient solution. 
The results at steady state were compared with solu- 

tions from a steady state analysis; excellent agreement 
was obtained. 

To illustrate the radiative behavior and types of 
solutions that can be obtained, three types of tran- 
sients are examined. For the first, a layer initially 
at uniform temperature is placed in a hot radiative 

environment while being cooled by convection at both 
boundaries. The transient temperature distributions 
can have rapidly varying shapes when the optical 
thickness is large so that absorption of incident energy 
is concentrated near the boundaries. An important 
effect of refractive index is that internal reflections 
promote the distribution of radiative energy within 
the layer; this makes the transient temperature dis- 
tributions more uniform. For the second type of tran- 
sient, the layer is heated by radiation on one side and 
is cooled by convection and radiation on the other. If 
the optical thickness is less than about 10, internal 
reflections provided by a refractive index of two have 

a substantial effect in equalizing the temperature dis- 

tributions. For the third type of transient a layer in 
cold surroundings is subjected to heating on both sides 
by a hot transparent gas. While being heated the layer 
is losing energy by radiation. The minimum tem- 

perature is at the layer centerline, and the lowest 
steady state temperature is for J+, z 1. For a large q, 
the temperatures are uniform over the central portion 
of the layer and the amplitude of the temperature 
variation is decreased. 
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APPENDIX: COEFFICIENTS FOR A TRIDIAGONAL 
SYSTEM 

The tridiagonal system in equations (6) and (10) has the 
following coefficients: 

h, (‘I 

02 ‘. ‘. 

CM- I 
0 M hM _ 
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